Deterministic Feature Selection for Regularized Least Squares Classification
نویسندگان
چکیده
We introduce a deterministic sampling based feature selection technique for regularized least squares classification. The method is unsupervised and gives worst-case guarantees of the generalization power of the classification function after feature selection with respect to the classification function obtained using all features. We perform experiments on synthetic and real-world datasets, namely a subset of TechTC300 datasets, to support our theory. Experimental results indicate that the proposed method performs better than the existing feature selection methods.
منابع مشابه
Feature Selection for Ridge Regression with Provable Guarantees
We introduce single-set spectral sparsification as a deterministic sampling-based feature selection technique for regularized least-squares classification, which is the classification analog to ridge regression. The method is unsupervised and gives worst-case guarantees of the generalization power of the classification function after feature selection with respect to the classification function...
متن کاملAn Efficient Method for Large-Scale l1-Regularized Convex Loss Minimization
Convex loss minimization with l1 regularization has been proposed as a promising method for feature selection in classification (e.g., l1-regularized logistic regression) and regression (e.g., l1-regularized least squares). In this paper we describe an efficient interior-point method for solving large-scale l1-regularized convex loss minimization problems that uses a preconditioned conjugate gr...
متن کاملRLScore: Regularized Least-Squares Learners
RLScore is a Python open source module for kernel based machine learning. The library provides implementations of several regularized least-squares (RLS) type of learners. RLS methods for regression and classification, ranking, greedy feature selection, multi-task and zero-shot learning, and unsupervised classification are included. Matrix algebra based computational short-cuts are used to ensu...
متن کاملGradient-based Laplacian Feature Selection
Analysis of high dimensional noisy data is of essence across a variety of research fields. Feature selection techniques are designed to find the relevant feature subset that can facilitate classification or pattern detection. Traditional (supervised) feature selection methods utilize label information to guide the identification of relevant feature subsets. In this paper, however, we consider t...
متن کاملA coordinate gradient descent method for ℓ1-regularized convex minimization
In applications such as signal processing and statistics, many problems involve finding sparse solutions to under-determined linear systems of equations. These problems can be formulated as a structured nonsmooth optimization problems, i.e., the problem of minimizing `1-regularized linear least squares problems. In this paper, we propose a block coordinate gradient descent method (abbreviated a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014